Note

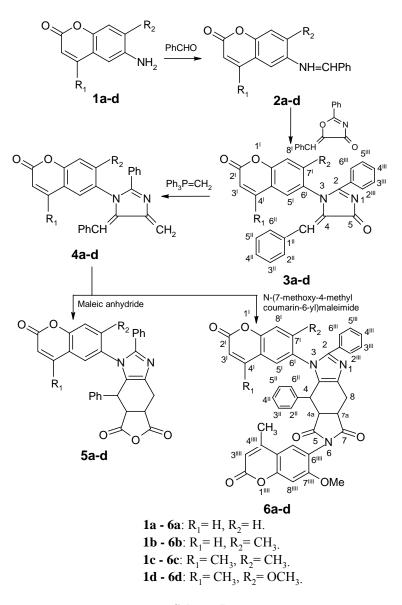
Synthesis and antimicrobial screening of 5*H*,7*H*-*N*-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-4,5,6,7-tetrahydrobenzimidazo[5,6-*c*]-furan and 5*H*,7*H*-*N*-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-6-(7-methoxy-4-methylcoumarin-6-yl)-4,5,6,7-tetrahydro benzimidazo[5,6-*c*]pyrrole

B P Choudhari & V V Mulwad*

Department of Chemistry, The Institute of Science, 15, Madam Cama Road, Mumbai 400 032, India

E-mail: vinata_mulwad@hotmail.com

Received 19 May 2004; accepted (revised) 3 March 2005


The Schiff bases 2a-d of 6-aminocoumarins 1a-d on reaction with 4-benzylidene-2-phenyloxazolin-5-one in DMF and catalytic amount of pyridine afford 4-benzylidene-3-(coumarin-6-yl)-2phenylimidazolin-5-ones 3a-d which on further Wittig reaction yield the corresponding 4-benzylidene-3-(coumarin-6-yl)-5methylene-2-phenylimidazolines 4a-d. Compounds 4a-d on Diel's-Alder reaction with maleic anhydride and N-(7-methoxy-4methylcoumarin-6-yl)maleimide separately give 5H,7H-N-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-4,5,6,7-tetrahydrobenzimidazo(5,6-c)furans 5a-d and 5H,7H-N-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-6-(7-methoxy-4-methylcoumarin-6-yl)-4,5,6,7-tetrahydrobenzimidazo(5,6-c) pyrroles **6a-d** respectively. The structures of the compounds have been established on the basis of the spectral and analytical data. All the compounds 3-6a-d have been screened for their antimicrobial activities and found to exhibit significant antibacterial and antifungal activities.

Keywords: Aminocoumarin, Schiff bases, Wittig reaction, Diel's-Alder reaction, Antimicrobial activity

IPC: Int.Cl.⁷ C 07 D

Coumarin derivatives have aroused considerable interest of chemists due their versatile practical applications as well as their wide range of biochemical properties¹. Nitrogen mustards synthesized from 6aminocoumarins exhibit carcinogenic activity². They are also known to possess antiviral³ activity and especially effective against HIV1(ref 4). The Schiff bases of 6-aminocoumarins are well-known for their wide range of pharmaceutical like antibacterial, and antifungal⁵ activities. Moreover, many imidazoline derivatives have been reported to be topically effective in nasal congestion⁶. Also, the benzimidazoles and their derivatives constitute a class of biologically active antihelmintic compounds active against whipworm infestations⁷. Encouraged with the above reports, we planned to synthesize new heterocyclic compounds containing the benzimidazole moiety substituted at the 6-postion of the coumarin ring via the formation of the Schiff bases of the 6aminocoumarin.

6-Aminocoumarins **1a-d** on treatment with benzaldehyde in ethanol in presence of catalytic amount of glacial acetic acid afforded the Schiff bases⁵ 2a-d, which on reaction with 4-benzvlidene-2phenyloxazoline-5-one⁸ in DMF and catalytic amount of pyridine yielded 4-benzylidene-3-(coumarin-6-yl)-2-phenylimidazolin-5-one **3a-d**. The IR spectrum of **3b** in KBr suggested the absence of $-NH_2$ group due to absence of any significant band beyond 3056 cm⁻¹ indicating the formation of product. Its ¹³C NMR spectrum in DMSO- d_6 showed signals at δ 159.00 for the >C=N-, 173.20 for the carbonyl group at C₅, etc. Compounds 3a-d on Wittig reaction in toluene afforded 4-benzylidene-3-(coumarin-6-yl)-5-methylene-2-phenylimidazoline **4a-d**. The ¹³C NMR spectrum of **4b** in DMSO- d_6 did not show any signal at δ 173.20 indicating the absence of the carbonyl group at C₅ observed in the 13 C NMR spectrum of **3b**. Compounds 4a-d on Diel's-Alder reaction with maleic anhydride and N-(7-methoxy-4-methylcoumarin-6-yl)maleimide separately in dichloromethane and anhy. AlCl₃ furnished the corresponding 5H,7H-N-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-4,5,6,7-tetrahydrobenzimidazo[5,6-c]furan **5a-d** and 5H,7H-N-(coumarin-6-yl)-2,8-diphenyl-5,7-dioxo-6-(7-methoxy-4-methylcoumarin-6-yl)-4,5,6,7-tetrahydrobenzimidazo-[5,6-c]pyrrole (6a-d, Scheme I). The IR spectrum of **5b** in KBr showed band at 1792 cm⁻¹ for the carbonvls at C₅ and C₇, etc. Its ¹H NMR spectrum in DMSO- d_6 showed a doublet at δ 2.23 for two protons of the methylene group at C_8 , triplet at 2.42 for the proton at C_{4a} . A quartet was observed at 2.52 for the proton at C_{7a} and a doublet at 3.00 for the proton of C_4 . The 13 C NMR spectrum in DMSO- d_6 showed signals at δ 25.75 for C₈, 35.25 for C₄, 82.25 for C_{4a}, 82.50 for C_{7a}. etc. Its mass spectrum showed molecular ion peak (m/z) M⁺ 500 (35). The ¹H NMR spectrum of **6b** in

Scheme I

DMSO- d_6 showed a sharp singlet at δ 3.80 for the three protons of the methoxy group. Its ¹³C NMR spectrum in DMSO- d_6 showed signals at δ 55.17 for the carbon of the methoxy group, etc.

Antimicrobial activity

The compounds **3-6a-d** were screened for their antibacterial activity against *S. aureus*, and *S typhi* and antifungal activity against *A. niger* and *C. albicans* (**Table I**). The minimum inhibitory concentration (MIC) was determined using tube dilution method according to the standard procedure⁹, DMF was used as a solvent and blank. Ciprofloxacin and miconazole were used as the antibacterial and antifungal standards respectively. An examination of result reveals that all the compounds showed antimicrobial activity ranging from 50 μ g/mL to 200 μ g/mL.

Experimental Section

General. Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer 257 spectrophotometer using KBr, ¹H NMR and ¹³C NMR were recorded on a Bruker AMX500 MHz using TMS as an internal standard; mass spectra on a Shimadzu GC-MS. The homogenity of the compounds was determined on the silica gel plates. The spots were developed in the

Compd	Antibacterial activity		Antifungal activity	
	S. aureus	S. typhi	A. niger	C. albicans
3a	-	+	++	-
3b	+	++	++	-
3c	+	++	++	+
3d	++	+++	+++	++
4 a	+	-	-	+
4b	+	-	+	+
4 c	++	+	+	++
4d	++	++	++	+++
5a	+	++	-	+
5b	+	++	+	+
5c	++	++	+	++
5d	+++	+++	++	++
6a	++	+	+	-
6b	++	++	+	+
6c	++	+++	++	++
6d	+++	+++	++	++
Ciprofloxacin	*	*		
Miconazole			*	*

Table I — Antimicrobial activity data of compounds 3- 6a-d.
(MIC $\mu g/mL$)

Note: 200 μ g/mL = +, 150 μ g/mL =++, 100 μ g/mL = +++, 50 μ g/mL = ++++, - = Not active up to 200 μ g/mL, * = 5 μ g/mL

iodine chamber. All the compounds gave satisfactory elemental analysis.

4-Benzylidene-3-(7-methylcoumarin-6-yl)-2phenylimidazolin-5-one 3b. A mixture of Schiff bases **2b** (0.01 mole) and 4-benzylidene-2phenyloxazoline-5-one was refluxed in DMF in presence of catalytic amount of p_y ridine for 5 hr. The mixture was cooled and poured over crushed ice and water containing a little amount of conc. HCl. The product obtained was filtered, washed, dried and recrystallised from ethanol. Similarly **3a** and **3c-d** were also prepared.

3a: Mol. Formula $C_{25}H_{16}N_2O_3$, m.p. 150°C, yield: 69%. **3b**: Mol. formula $C_{26}H_{18}N_2O_3$, m.p. 179°C, yield: 65%; ¹H NMR (DMSO- d_6 , δ): 2.43 (s, 3H, -CH₃), 6.10 (s, 1H, =CH-, =CH-C₆H₅), 6.44 (d, J=9.50Hz, 1H, C₃[']-H), 6.60 (d, J=7.50Hz, 2H, C_{2"}H & C_{6"}-H), 6.80 (t, 2H, C_{3"}-H & C_{5"}-H), 6.95 (d, J=9.50Hz, 2H, C_{2"}-H & C_{6"}-H), 7.08 (t, 1H, C_{4"}-H), 7.25 (t, 2H, C_{3"}-H& C_{5"}-H), 7.32 (s, 1H, C_{5'}-H, coumarin), 7.60 (t, 1H, C_{4"}-H), 7.90 (s, 1H, C_{7'}-H), 8.11 (d, J=9.50Hz, 1H, C_{4"}-H). ¹³C NMR (DMSO d_6 , δ): 17.00 (-CH₃), 112.00 (=*C*H-Ph), 116.00 (C_{3'}), 118.00 ($C_{4a'}$), 144.00 ($C_{4'}$), 148.18 ($C_{6'}$), 153.20 ($C_{7'}$), 154.00 ($C_{8a'}$), 159.00 (C_2), 161.10 ($C_{2'}$), 173.20 (C_5), 120.00–143.00 (16 C-atoms); **3c**: Mol. formula $C_{27}H_{20}N_2O_3$, m.p. 200°C, yield: 56%. **3d**: Mol. formula $C_{26}H_{18}N_2O_4$, m.p. 187°C, yield: 59%.

4-Benzylidene-3-(7-methylcoumarin-6-yl)-5methylene-2-phenylimidazoline 4b. A mixture of **3b** (0.01 mole) and Wittig reagent ($Ph_3P=CH_2$), (0.01 mole) in toluene (20 mL) were refluxed for 3 hr. The mixture was cooled and quenched into saturated solution of ammonium chloride and later extracted with diethylether. The solvent on evaporation yielded the product, which was recrystallised from ethanol. Similarly **4a** and **4c-d** were also prepared.

4a: Mol. formula $C_{26}H_{18}N_2O_2$, m.p. 168°C, yield: 81%; **4b:** Mol. formula $C_{27}H_{20}N_2O_2$, m.p. 157°C, yield: 76%; ¹H NMR (DMSO- d_6 , δ): 2.43 (s, 3H, -CH₃), 5.15 (s, 2H, =CH₂), 6.10 (s, 1H, =CH-, =CH- C_6H_5), 6.44 (d, J=9.50Hz, 1H, $C_{3'}$ -H), 6.60 (d, J=7.50Hz, 2H, C_{2"}-H and C_{6"}-H), 6.80 (t, 2H, C_{3"}-H and C_{5"}-H, =CH-Ph), 6.95 (d, J=9.50Hz, 2H, C_{2"}-H and C_{6"}-H), 7.08 (t, 1H, C_{4"}-H), 7.25 (t, 2H, C_{3"}-H and $C_{5''}$ -H), 7.32 (s, 1H, $C_{5'}$), 7.60 (t, 1H, $C_{4''}$ -H), 7.90 (s, 1H, $C_{7'}$ -H), 8.11 (d, J=9.50Hz, 1H, $C_{4'}$ -H); ¹³C NMR (DMSO- d_6 , δ): 17.00 (-CH₃), 110.00 $(=CH_2)$, 112.00 (=CH-Ph), 116.00 $(C_{3'})$, 118.00 $(C_{4a'})$, 144.00 ($C_{4'}$), 148.18 ($C_{6'}$), 153.20 ($C_{7'}$), 154.00 ($C_{8a'}$), 159.00 (C₂), 161.10 (C_{2'}), 120.00 -143.00 (18 Catoms); 4c: Mol. formula $C_{28}H_{22}N_2O_2$, m.p. 177°C yield 72%; 4d: Mol. formula C₂₈H₂₂N₂O₃, m.p. 197°C, yield 67%.

5*H*,7*H*-*N*-(7-methylcoumarin-6-yl)-2,8-diphenyl-5,7-dioxo-4,5,6,7-tetrahydrobenzimidazo[5,6-*c*]furan 5b. A mixture of 4a-d, (0.001 mole) and maleic anhydride (0.001 mole) in dichloromethane (20 mL) were stirred at room temperature in presence of catalytic amount of anhy. AlCl₃ for 1 hr. It was then poured over crushed ice and water containing a little amount of conc. HCl and later extracted with dichloromethane. The solvent on evaporation afforded the product, which was recrystallised from ethanol. Similarly 5a and 5c-d were also prepared.

5a: Mol. formula $C_{30}H_{18}N_2O_5$, m.p. 185°C, yield: 77%; **5b**: Mol. formula $C_{31}H_{20}N_2O_5$, m.p. 206°C, yield: 73%, ¹H NMR (DMSO-*d*₆, δ): 2.23 (d, 2H, C₈), 2.33 (s, 3H, -CH₃), 2.42 (t, 1H, C_{4a}-H), 2.52 (q, *J*=6.50Hz, 1H, C_{7a}-H), 3.00 (d, 1H, C₄), 6.44 (d, *J*=9.50Hz, 1H, C₃''-H), 6.60 (d, *J*=7.50Hz, 2H, C₂'''-H & C₆'''-H), 6.80 (t, 2H, C₃''-H and C₅'''-H), 6.95 (d, *J*=9.50Hz, 2H, C₂'''-H and C₆'''-H), 7.08 (t, 1H, C₄''-H), 7.25 (t, 2H, $C_{3'''}$ -H and $C_{5'''}$ -H), 7.32 (s, 1H, $C_{5'}$ -H), 7.60 (t, 1H, $C_{4'''}$ -H), 7.90 (s, 1H, $C_{8'}$ -H), 8.11 (d, J=9.50Hz, 1H, $C_{4'}$ -H); ¹³C NMR (DMSO- d_6 , δ): 17.00 (-CH₃), 25.75 (C₈), 35.25 (C₄), 82.25 (C₄), 82.50 (C_{7a}), 116.00 (C_{3'}), 118.00 (C_{4a'}), 144.00 (C_{4'}), 148.18 (C_{6'}), 153.20 (C_{7'}), 154.00 (C_{8a'}), 159.00 (C₂), 161.10 (C_{2'}), 173.20 (C₅), 174.10 (C₇), 120.00 –143.00 (16 Catoms); Mass (m/z) (%): M⁺ 500 (35), 423 (39), 346 (52), 187 (30), 161 (12), 159 (10), 135 (40), 131 (20), 130 (10), 102 (03), 91 (44), 77 (100), 76 (10), 63 (23), **5c**: Mol. formula C₃₂H₂₂N₂O₆, m.p. 182°C, yield: 81%.

5*H*,7*H*-*N*-(7-methylcoumarin-6-yl)-2,8-diphenyl-5,7-dioxo-6-(7-methoxy-4-methylcoumarin-6-yl]-

4,5,6,7-tetrahydrobenzimidazo(5,6-c)pyrrole 6b. A mixture of 4a-d (0.01 mole) and N-(7-methoxy-4methylcoumarin-6-yl)maleimide (0.01 mole) in dichloromethane (20 mL) were stirred at room temperature in presence of catalytic amount of anhy. AlCl₃ for 1 hr. It was then poured over crushed ice and water containing a little amount of conc. HCl and later extracted with dichloromethane. The solvent on evaporation afforded product, which was recrystallised from ethanol. Similarly 6a and 6c-d were also prepared.

6a: Mol. formula $C_{41}H_{27}N_3O_7$, m.p. 187°C, yield: 76%, **6b**: Mol. formula $C_{42}H_{29}N_3O_7$, m.p. 195°C, yield: 66%; ¹H NMR (DMSO-*d*₆, δ): 2.23 (d, *J*=6.50Hz, 2H, C₈), 2.33 (s, 2 x 3H, 2 x–CH₃), 2.42 (t, 1H, C_{4a}-H), 2.52 (q, *J*=6.50Hz, 1H, C_{7a}-H), 3.00 (d, *J*=6.50Hz, 1H, C₄), 3.80 (s, 3H, –OCH₃), 6.30 (s, 1H, C₂^m–H), 6.44 (d, *J*=9.50Hz, 1H, C₃ⁿ-H), 6.60 (d, *J*=7.50Hz, 2H, C₂^m-H and C₆^m-H), 6.80 (t, 2H, C₃^m-H and C₅^m-H), 6.95 (d, *J*=9.50Hz, 2H, C₂^m-H and C₆^m-H), 7.08 (t, 1H, C₄ⁿ–H), 7.25 (t, 2H, C₃^m-H and C₅^m-H), 7.32 (s, 1H, C₅^m-H), 7.45 (s, 1H, C₅^m-H), 7.60 (t, 1H, C₄^m-H), 7.75 (s, 1H, C₈^m-H), 7.90 (s, 1H, C₈^m-H), 8.11 (d, *J*=9.50Hz, 1H, C4'-H). ¹³C NMR (DMSO-*d*₆, δ): 17.00 (C₇–CH₃), 17.50 (C₄^m–CH₃), 25.75 (C₈), 35.25 (C₄), 55.17 (–OCH₃), 82.25 (C_{4a}), 82.50 (C_{7a}), 116.00 (C₃ & C₃^m), 118.00 (C_{4a}' and C_{4a}'), 144.00 (C₄' 148.18 (C₆' C₆^m), 153.20 (C₇' and C₇^m), 154.00 (C_{8a}' and C_{8a}^m), 159.00 (C₂), 161.10 (C₂'), 162.10 (C₂^m), 173.20 (C₅), 174.10 (C₇), 110.00– 143.00 (19 C-atoms). **6c**: Mol. formula C₄₄H₃₁N₃O₇, m.p. 213°C, yield: 69%, **6d**: Mol. formula C₄₄H₃₁N₃O₈, m.p. 193°C, yield: 57%.

Acknowledgement

Authors thank S V Chiplunkar, MUICT for elemental analysis, TIFR Mumbai for ¹H and ¹³C NMR spectral analysis, Prof Vaidya, Head of Microbiology Department, Institute of Science, Mumbai and Haffkine Institute, Parel for biological testing. Authors also thank the Government of for scholarship, Women Graduates Maharashtra Union for awarding 'The Amy Rustomjee International Scholarship' and the University of Mumbai for the 'Sir Currimbhoy Ebrahim and Bai Khanoobai Noormohamed Jairazbhoy Peefbhoy Scholarship'.

References

- Ghoto T & Yamamura S, Pyran Compounds, In Methodicum Chimicum, Part 3, Vol 11, edited by Korte F & Ghoto M, (Academic Press, New York), 1978.
- 2 Schuda P F, Top Org Chem, 91, 1980, 75.
- 3 Kun E & Aurelian L, US Pat 412 783, **1991**; Chem Abstr, 115, **1991**, 92071t.
- 4 Kun E (Octamer Inc USA) PCT Int App, WO9851, 307.
- 5 Mulwad V V & Shirodkar J M, Indian J Heterocyclic Chem, 11, 2002, 199.
- 6 AMA Drug Evaluation, 3rd edition, (PSG Publishing Company Inc), **1977**, 649- 653.
- 7 Rao R S, Chawate V & Shah S J, An introduction to synthetic drugs and dyes, 2nd edn, (Himalaya Publishing House), 1955, 53.
- 8 Vogel A I, Textbook of Practical Organic Chemistry, 5th edn., 1996, 1155.
- 9 Frankel S, Reitman S & Sonnenwirth A C,Clinical Laboratory Methods and Diagonosis, 7th edn,. (C V Mosby Company, Germany), Vol. 2, **1970**, 1406.